6080 independent reflections

 $R_{\rm int} = 0.058$

4822 reflections with $I > 2\sigma(I)$

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

rac-Ethyl (8aR,9aS)-8a-methyl-8-(4-nitrophenvl)-9a.10-diphenvl-12-(p-tolvl)-9,9a-dihydro-8aH-di-1,2,4-triazolo-[4,3-a:3',4'-d][1,5]benzodiazepine-6-carboxylate

Aicha Boudina,^a Abdesselam Baouid,^a Aissa Hasnaoui,^a Driss Eddike^b* and Monigue Tillard^c

^aLaboratoire de Chimie des Substances Naturelles et des Hétérocycles, Département de Chimie, Faculté des Sciences-Semlalia, BP 2390, 40001 Marrakech, Morocco, ^bLaboratoire de Chimie du Solide Minéral, Departement de Chimie, Faculté des Sciences, Université Mohammed Premier, BP 524, 60 000 Oujda, Morocco, and ^cInstitut Charles Gehrardt, UMR 5253 CNRS, AIME, CC15, Université de Montpellier 2, Sciences et Techniques du Languedoc, 2 Place Eugène Bataillon, 34095 Montpellier Cédex 5, France

Correspondence e-mail: eddike@sciences.univ-oujda.ac.ma

Received 12 April 2007; accepted 20 June 2007

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.005 Å; R factor = 0.077; wR factor = 0.213; data-to-parameter ratio = 13.1.

The structure of the title compound, C₄₀H₃₅N₇O₄, is stabilized by weak $C-H \cdots N$ and $C-H \cdots O$ hydrogen bonds. There are also $\pi - \pi$ interactions between triazole and 9a-phenyl rings [the distance between the pertinent centroids is 3.708(2) Å], as well as $C-H \cdots \pi$ interactions. In the title molecule, the C8a-methyl and C9a-phenyl groups are present in trans positions. The structure analysis established the presence of the enantiomeric pair of the diastereoisomer RS/SR and excluded the presence of the enantiomers of the diastereoisomer RR/SS.

Related literature

For related literature, see: Baouid et al. (1994); Begtrup et al. (1988); Bellantuono et al. (1980); Benelbaghdadi et al. (1997); Boudina et al. (2006); Harrison et al. (2005); Sternbach (1978).

Experimental

Crystal data

R w

S

60

$C_{40}H_{35}N_7O_4$	V = 3511.2 (4) Å ³
$M_r = 677.75$	Z = 4
Monoclinic, $P2_1/c$	Mo $K\alpha$ radiation
a = 9.4951 (6) Å	$\mu = 0.09 \text{ mm}^{-1}$
b = 21.436(1) Å	T = 293 (2) K
c = 18.885 (1) Å	$0.47 \times 0.36 \times 0.13 \text{ mm}$
$\beta = 114.011 \ (5)^{\circ}$	

Data collection

Oxford Diffraction Xcalibur CCD diffractometer Absorption correction: none 59538 measured reflections

Refinement

$R(F^2) = 0.213$ H-atom parameters constrained $= 1.14$ $\Delta \rho_{max} = 0.36$ e Å $^{-3}$ > 80 reflections $\Delta \rho_{min} = -0.27$ e Å $^{-3}$	$[F^2 > 2\sigma(F^2)] = 0.077$	463 parameters
= 1.14 $\Delta \rho_{\text{max}} = 0.36 \text{ e} \text{ Å}^{-3}$ 180 reflections $\Delta \rho_{\text{min}} = -0.27 \text{ e} \text{ Å}^{-3}$	$R(F^2) = 0.213$	H-atom parameters constrained
$\Delta \rho_{\rm min} = -0.27 \text{ e } \text{\AA}^{-3}$	= 1.14	$\Delta \rho_{\rm max} = 0.36 \text{ e } \text{\AA}^{-3}$
	080 reflections	$\Delta \rho_{\rm min} = -0.27 \ {\rm e} \ {\rm \AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

Values were calculated using PLATON (Version 200905; Spek, 2003). Cg1 and Cg2 are the centroids of the phenyl and 3-methylphenyl rings C35/C36/C39/ C38/C37/C40 and C41-C46, respectively.

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdot \cdot \cdot A$
C16-H16A···O18	0.97	2.34	2.708 (6)	101
C20−H20···N7	0.93	2.42	2.751 (4)	101
C30−H30···N13	0.93	2.40	2.779 (4)	104
C46-H46···N13	0.93	2.61	2.938 (4)	101
$C34 - H34 \cdots Cg1^{i}$	0.98	2.93	3.666 (5)	121
$C19-H19\cdots Cg2^{ii}$	0.93	2.86	3.697 (5)	146

Symmetry codes: (i) x, y, z; (ii) $x, \frac{3}{2} - y, z - \frac{1}{2}$.

Data collection: CrvsAlis CCD (Oxford Diffraction, 2004); cell refinement: CrysAlis CCD; data reduction: CrysAlis RED (Oxford Diffraction, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Version 1.075; Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FB2049).

References

- Baouid, A., Benharref, A., Hasnaoui, A. & Lavergne, J.-P. (1994). Bull. Soc. Chim. Belg. 103, 743-751.
- Begtrup, M., Elguero, J., Faure, R., Campus, P., Escopa, C., Ilavsky, D., Fruchier, A., Marzin, C. & Mendoza, J. (1988). Magn. Reson. Chem. 26, 134-151
- Bellantuono, C., Reggi, G., Tognoni, G. & Garattini, S. (1980). Drugs, 19, 195-219.
- Benelbaghdadi, R., Hasnaoui, A. & Lavergne, J.-P. (1997). Bull. Soc. Chim. Belg. 106, 813-815.
- Boudina, A., Baouid, A., Hasnaoui, A. & Essaber, M. (2006). Synth. Commun. 33, 573-579.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.

- Harrison, W. T. A., Yathirajan, H. S., Anilkumar, H. G., Sarojini, B. K., Narayana, B. & Lobo, K. G. (2005). Acta Cryst. E61, o3810-o3812.
- Oxford Diffraction (2004). *CrysAlis CCD* and *CrysAlis RED*. Versions 1.71. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.
- Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
- Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7–13.
 Sternbach, L. H. (1978). Prog. Drug Res. 22, 229–266.

Acta Cryst. (2007). E63, o3301-o3302 [doi:10.1107/S1600536807030103]

rac-Ethyl (8a*R*,9a*S*)-8a-methyl-8-(4-nitrophenyl)-9a,10-diphenyl-12-(*p*-tolyl)-9,9a-dihydro-8a*H*-di-1,2,4-triazolo[4,3-*a*:3',4'-*d*][1,5]benzodiazepine-6-carboxylate

A. Boudina, A. Baouid, A. Hasnaoui, D. Eddike and M. Tillard

Comment

Several benzodiazepine derivatives containing additional rings have proven to be of pharmacological interest (Sternbach, 1978; Bellantuono *et al.*, 1980). For years, our research team is interested in the synthesis of such compounds by cyclization reactions onto 1,4-benzodiazepines (Benelbaghdadi *et al.*, 1997) and 1,5-benzodiazepines (Baouid *et al.*, 1994; Boudina *et al.*, 2006). Within this context, we have studied the 1,3-dipolar cycloadditions of diarylnitrilimines with ethyl 3a-methyl-3-(4-nitrophenyl)-5-phenyl-3a,4-dihydro[1,2,4] triazolo[4,3-*a*][1,5]benzodiazepine-1-carboxylate (1) (Baouid *et al.*, 1994).

From the spectral data (mass; ${}^{1}\text{H}-{}^{13}\text{C}-\text{NMR}$) possible diastereoisomers **3X** or **3Y** of the cycloadduct were established. In particular, the chemical shifts of 86 and 90 p.p.m. observed for the quaternary carbon atoms C8a and C9a have ruled out the formation of the alternative regioisomer that would be formed by a reverse addition of the dipolar compound **(2)** on C=N of the ethyl 3a-methyl-3-(4-nitrophenyl)-5-phenyl-3a,4-dihydro[1,2,4]triazolo[4,3-*a*] [1,5]benzodiazepine-1-carboxylate, **(1)**. For the alternative regioisomer chemical shifts of about 50 p.p.m. would be expected (Begtrup *et al.* 1988). However, the NMR spectroscopic data (${}^{1}\text{H}$ and ${}^{13}\text{C}$) did not allow to distinguish between the two diastereoisomers **3X** (*RS/SR*) and **3Y** (*RR/SS*).

On the other hand, the present crystallographic study has confirmed the formation of the (3X) *trans* diastereoisomer with its two asymmetric carbon atoms C8a and C9a displaying respective (*RS*,*SR*) absolute configurations. The 1,3-dipolar cycloaddition of diarylnitrilimine on ethyl 3a-methyl-3-(4-nitrophenyl)-5-phenyl-3a,4-dihydro[1,2,4]triazolo[4,3-*a*] [1,5]ben-zodiazepine-1-carboxylate, (1), is completely regio- and diastereoselective.

The molecule of the title compound (Scheme 1; Fig. 1) is composed of a tetracylic core formed by a benzodiazepine bicycle and two 5-membered rings (triazoles) that are differently substituted.

The 7-membered diazepine ring displays a boat conformation; the atoms N5, N13, C8a and C9a form the "bottom" of the boat. The atoms (C8a, C9, C9a) form the "prow" while (N5, N13, C13*a*, C4a) form the "stern". The angles between the best planes of the "bottom" and the "prow" and between the "bottom" and the "stern" equal to 47.5 (3) and 53.2 (2)°, respectively.

The bonds within the triazole rings are comparable with those reported in the literature for related compounds, as for example in 1-(2-Bromo-5-methoxyphenyl)-8-chloro-6-(2-fluorophenyl)- 4H-1,2,4-triazolo[4,3-*a*][1,4]benzodiazepine (Harrison *et al.*, 2005).

Experimental

Preparation is depicted in Scheme 2. A solution of ethyl 3a-methyl-3-(4-nitrophenyl)-5-phenyl-3a,4-dihydro [1,2,4]triazolo[4,3-a][1,5]benzodiazepine-1-carboxylate (1) (0.65 mmol) and 4-methyl-*N*-phenylbenzohydrazonoyl chlor-ide (2) (0.65 mmol) in dichloromethane (20 ml) was prepared; triethylamine (0.9 mmol) dissolved in dichloromethane (5

ml) was added dropwise. The mixture was stirred for 7 days at room temperature, washed several times with water. The aqueous phase was then extracted with dichloromethane (3 x 20 ml). The organic layer was dried over anhydrous sodium sulfate and then concentrated under reduced pressure. Then it was purified by chromatography on silica gel column (eluent: hexane/ethyl acetate), the isolated product was recrystallized from ethanol and the diastereoisomer 3X (*RS/SR*) was obtained in 50% yield. The diatereoisomer 3Y (*RR/SS*) was not isolated.

Melting point: 479–481 K. ¹H NMR (CDCl₃, δ , p.p.m.): 1.20 (*t*, 3H, CH₃CH₂O), 1.80 (*s*, 3H, CH₃—C3a), 2.35 (*s*, 3H, CH₃—Ar), 2.90, 3.70 (2 d, *J* = 15 Hz, 2H, CH₂–4), 4.29 (*m*, 2H, CH₃CH₂O), 6.65- 7.73 (*m*, 22H, H—Ar). ¹³C NMR (CDCl₃, δ , p.p.m.): 14.31 (CH₃CH₂O), 21.81 (CH₃—Ar), 26.92 (CH₃—C3a), 41.22 (CH₂–C4), 62.42 (CH₃CH₂O), 85.93, 90.05 (C3a, C4a), 158.06 (C=O). Mass spectrum: m/z 678 (*M*⁺, 100%). Anal. calc. for C₄₀H₃₅N₇O₄: C, 70.90; H, 5.17; N, 14.48; found: C, 70.56; H, 5.47; N, 14.26%.

Refinement

All the H atoms were found in a difference Fourier map. Nevertheless, the H atoms were refined using a riding model with C_{aryl} —H = 0.93 Å, $C_{methylene}$ —H = 0.97 Å and C_{methyl} —H = 0.96 Å. $U_{iso}(H) = 1.2U_{eq}(C)$ except for $U_{iso}(H_{methyl}) = 1.5U_{eq}(C_{methyl})$.

Figures

Fig. 1. Molecular view of the title molecule. The displacement ellipsoids are drawn at the 30% probability level (hydrogen atoms have been omitted for clarity).

Fig. 2. Reaction scheme of the preparation of the title compound 3X and the scheme of the hypothetic diastereoisomer 3Y that was not found.

$\label{eq:rac-Ethyl} $$ (8aR,9aS)-8a-methyl-8-(4-nitrophenyl)-9a,10- diphenyl-12-(p-tolyl)-9,9a-dihydro-8aH-di-1,2,4-triazolo[4,3 - a:3',4'-d][1,5] benzodiazepine-6-carboxylate $$ (4-nitrophenyl)-9a,10- diphenyl-12-(p-tolyl)-9,9a-dihydro-8aH-di-1,2,4-triazolo[4,3 - a:3',4'-d][1,5] benzodiazepine-6-carboxylate $$ (4-nitrophenyl-12-(p-tolyl)-9,9a-dihydro-8aH-di-1,2,4-triazolo[4,3 - a:3',4'-d][1,5] benzodiazepine-6-carboxylate $$ (4-nitrophenyl-12-(p-tolyl)-9,9a-dihydro-8aH-di-1,2,4-triazolo[4,3 - a:3',4'-d][1,5] benzodiazepine-6-carboxylate $$ (4-nitrophenyl-12-(p-tolyl)-9,9a-dihydro-8aH-di-1,2,4-triazolo[4,3 - a:3',4'-d][1,5] benzodiazepine-6-carboxylate $$ (4-nitrophenyl-12-(p-tolyl)-9,3-dihydro-8aH-di-1,2,4-triazolo[4,3 - a:3',4'-d][1,5] benzodiazepine-6-carboxylate $$ (4-nitrophenyl-12-(p-tolyl)-9,3-dihydro-8aH-di-1,2,4-triazolo[4,3 - a:3',4'-d][1,5] benzodiazepine-6-carboxylate $$ (5-nitrophenyl-12-(p-tolyl)-9,3-dihydro-8aH-di-1,2,4-triazolo[4,3 - a:3',4'-d][1,5] benzodiazepine-6-carboxylate $$ (5-nitrophenyl-12-(p-tolyl)-9,3$

Crystal	data
---------	------

C ₄₀ H ₃₅ N ₇ O ₄	$F_{000} = 1424$
$M_r = 677.75$	$D_{\rm x} = 1.282 {\rm Mg m}^{-3}$
Monoclinic, $P2_1/c$	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
Hall symbol: -P2ybc	Cell parameters from 6080 reflections

a = 9.4951 (6) Å	$\theta = 3.1 - 25.0^{\circ}$
<i>b</i> = 21.436 (1) Å	$\mu = 0.09 \text{ mm}^{-1}$
c = 18.885 (1) Å	T = 293 (2) K
$\beta = 114.011 \ (5)^{\circ}$	Parallelepiped, orange
$V = 3511.2 (4) \text{ Å}^3$	$0.47 \times 0.36 \times 0.13 \text{ mm}$
Z = 4	

Data collection

Oxford Diffraction Xcalibur CCD diffractometer	4822 reflections with $I > 2\sigma(I)$
Radiation source: fine-focus sealed tube	$R_{\rm int} = 0.058$
Monochromator: graphite	$\theta_{\text{max}} = 32.4^{\circ}$
T = 293(2) K	$\theta_{\min} = 3.1^{\circ}$
ω scans	$h = -14 \rightarrow 13$
Absorption correction: none	$k = -31 \rightarrow 31$
59538 measured reflections	$l = -25 \rightarrow 25$
6080 independent reflections	

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.077$	H-atom parameters constrained
$wR(F^2) = 0.213$	$w = 1/[\sigma^2(F_o^2) + (0.098P)^2 + 1.8217P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.14	$(\Delta/\sigma)_{\text{max}} = 0.001$
6080 reflections	$\Delta \rho_{max} = 0.36 \text{ e} \text{ Å}^{-3}$
463 parameters	$\Delta \rho_{min} = -0.27 \text{ e } \text{\AA}^{-3}$
136 constraints	Extinction correction: none
Primary atom site location: structure-invariant direct methods	

Special details

Experimental. A reference frame was measured every 25 frames. No significant intensity decay was observed.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2$ sigma(F^2) is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger. All H atoms were placed in geometrically idealized positions *via* HFIX instructions and constrained to ride on their parent atoms, with $U_{iso}(H) = 1.5U_{eq}(C)$ for methyl groups and $U_{iso}(H)$ = $1.2U_{eq}$ for others hydrogen atoms.

	x	у	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
N13	0.8798 (3)	0.64005 (11)	0.73679 (13)	0.0453 (6)
N10	0.9424 (3)	0.73291 (11)	0.70030 (13)	0.0480 (6)
N8	0.6017 (3)	0.59766 (11)	0.52064 (13)	0.0466 (6)
015	0.7815 (3)	0.43645 (12)	0.63243 (16)	0.0766 (7)
C19	0.5837 (3)	0.61582 (14)	0.44793 (16)	0.0458 (7)
C9A	0.8549 (3)	0.67390 (12)	0.66433 (15)	0.0430 (6)
N11	1.0667 (3)	0.71352 (12)	0.76823 (14)	0.0535 (6)
N5	0.6045 (3)	0.58458 (12)	0.63816 (14)	0.0539 (6)
C12	1.0256 (3)	0.66285 (14)	0.79014 (16)	0.0483 (7)
С9	0.6868 (3)	0.68968 (13)	0.61452 (16)	0.0441 (6)
H9A	0.6840	0.7157	0.5720	0.053*
H9B	0.6482	0.7146	0.6457	0.053*
C30	1.0136 (3)	0.58390 (14)	0.64662 (19)	0.0534 (7)
H30	1.0219	0.5676	0.6938	0.064*
C6	0.6678 (3)	0.53484 (14)	0.61605 (17)	0.0496 (7)
C8A	0.5740 (3)	0.63483 (14)	0.57988 (16)	0.0487 (7)
C13A	0.7580 (3)	0.63447 (14)	0.76182 (16)	0.0492 (7)
N7	0.6638 (3)	0.53876 (11)	0.54741 (14)	0.0503 (6)
N25	0.5507 (4)	0.6741 (2)	0.22816 (19)	0.0823 (10)
C22	0.5580 (4)	0.65315 (18)	0.30281 (18)	0.0616 (9)
C1	0.7694 (4)	0.65645 (16)	0.83336 (18)	0.0610 (8)
H1	0.8577	0.6775	0.8660	0.073*
C29	0.9337 (3)	0.63911 (13)	0.61937 (16)	0.0449 (7)
O27	0.5059 (4)	0.72786 (19)	0.20691 (18)	0.1052 (11)
C35	0.9795 (4)	0.77661 (14)	0.65434 (17)	0.0518 (7)
C24	0.5323 (4)	0.67613 (15)	0.41974 (18)	0.0577 (8)
H24	0.5065	0.7040	0.4503	0.069*
C21	0.6053 (4)	0.59292 (18)	0.32795 (19)	0.0644 (9)
H21	0.6282	0.5652	0.2962	0.077*
C36	1.1210 (4)	0.77877 (17)	0.65089 (19)	0.0663 (9)
H36	1.1990	0.7518	0.6812	0.080*
O26	0.5892 (4)	0.6378 (2)	0.18951 (18)	0.1127 (12)
C23	0.5198 (4)	0.69428 (17)	0.34791 (19)	0.0639 (9)
H23	0.4856	0.7342	0.3298	0.077*
C14	0.7398 (4)	0.48117 (16)	0.6684 (2)	0.0594 (9)
C41	1.1213 (3)	0.62815 (15)	0.85988 (17)	0.0535 (7)
C32	1.0725 (4)	0.57616 (19)	0.5349 (2)	0.0715 (10)
H32	1.1172	0.5548	0.5064	0.086*
C20	0.6181 (3)	0.57443 (16)	0.39974 (18)	0.0548 (8)
H20	0.6499	0.5340	0.4167	0.066*
C46	1.0849 (5)	0.56743 (16)	0.8711 (2)	0.0724 (10)
H46	0.9982	0.5484	0.8341	0.087*
C28	0.4078 (3)	0.65696 (18)	0.5526 (2)	0.0638 (9)
H28A	0.3959	0.6960	0.5259	0.096*
H28B	0.3825	0.6622	0.5966	0.096*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

N13 N10	0.0399 (12) 0.0520 (14)	0.0537 (14) 0.0489 (14)	0.0384(12) 0.0373(12)	-0.0037(10) -0.0058(11)	0.0119 (10) 0.0122 (11)	-0.0026(10)
N12	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Atomic displ	lacement parameters	$s(A^2)$				
H47C	1.5047	0.5437	1.089	0 0	.215*	
H47B	1.3561	0.5289	1.102	7 0	.215*	
H47A	1.4097	0.4831	1.053	9 0	.215*	
C47	1 4031 (8)	0.5761 (3)	1 066	4 (3) 0	144 (3)	
H16B	0.8330	0.3754	0.724	- 0 6 0	114*	
H16A	0.8391	0.3794	0.774	4 N	114*	
C16	0 8648 (5)	0.0075	0.525	8 (3) 0	0949 (14)	
H38	1.0506	0.8875	0.537.	3 0	120*	
C38	1 0331 (6)	0.8603 (2)	0.557	3 (3) 0	0998 (16)	
H17C	1 0494	0.4060	0.663	4 0	174*	
H17B	1.0629	0 4205	0.723	3 0	174*	
H17A	1.0207 (0)	0 3516	0.703	1 0	174*	
C17	1 0267 (6)	0.3910 (3)	0.000	5 (3) 0	1157 (18)	
H39	1.1470 (3)	0.8209 (2)	0.0020	8 N	110*	
C39	1.3003(0) 1.1476(5)	0.3013 (2)	0.993	5(2) 0	.0071 (13)	
C44	1.1302	0.4944	0.943.	3(2) 0	0891 (13)	
U45	1.1700(0)	0.33314 (1	0.930	5 0	1098	
П3 С45	0.4377	0.0098	0.825	$9 \qquad 0$	$.102^{\circ}$	
С3 H3	0.31/0(3)	0.6162 (2)	0.808	2(2) 0	.0049 (12) 102*	
C4A C3	0.0243(3) 0.5176(5)	0.00300 (1	0./14. 0.000	20(17) 0	.0525(7)	
п42 С4А	1.2///	0.0902	0.910 (4) 0.714	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	.070	
U42	1.2310 (4) 1.2777	0.00002 (1	0.910		.0033 (9) .076*	
пчэ С42	1.4301 1.2516 (A)	0.0401	1.0184	+ 0	.074	
U43	1.3423 (4)	0.6215 (2)	0.981	v (2) 0	.0785 (11)	
ПЭТ С42	1.1000	0.5154	0.022		.062	
U31 H31	1.0014 (4)	0.55270 (1	0.003	5 0	.0000 (10)	
C31	0.03/1 1 0814 (4)	0.0010	0.903	$\frac{1}{2}$ 0	.055	
U2	0.0489 (3)	0.0409 (2)	0.855	o (2) 0	.0773 (11)	
П33 С2	0.9916	0.6480	0.4614	+ 0	.U8U [*]	
C33	0.9968 (4)	0.63152 (1	(8) 0.508	u (2) 0	.06/0(10)	
H40	0.7707	0.8189	0.614	5 0	.075*	
C40	0.8653 (4)	0.81866 (1	0.610	64 (19) 0	.0628 (9)	
H37	0.8159	0.8874	0.531	8 0	.100*	
C37	0.8927 (6)	0.85982 (1	0.561	8 (2) 0	.0833 (12)	
H4	0.4151	0.5749	0.704	5 0	.087*	
C4	0.5049 (4)	0.59495 (1	(19) 0.737.	3 (2) 0	.0729 (10)	
H34	0.8772	0.7005	0.531	0 0	.063*	
C34	0.9279 (3)	0.66300 (1	0.549	79 (17) 0	.0523 (7)	
O18	0.7576 (4)	0.48085 (1	0.734:	54 (16) 0	.0943 (9)	
H28C	0.3401	0.6265	0.518	1 0	.096*	

0.0472 (13)

N8

0.0500 (14)

-0.0023 (11)

0.0382 (12)

0.0129 (10)

-0.0002 (10)

015	0.0715 (16)	0.0647 (15)	0.0899 (18)	0.0106 (12)	0.0291 (14)	0.0220 (13)
C19	0.0350 (14)	0.0573 (17)	0.0407 (15)	-0.0116 (12)	0.0108 (12)	-0.0036 (13)
C9A	0.0445 (15)	0.0443 (15)	0.0387 (14)	-0.0038 (12)	0.0152 (12)	-0.0009 (11)
N11	0.0525 (15)	0.0591 (16)	0.0418 (13)	-0.0064 (12)	0.0119 (12)	-0.0063 (11)
N5	0.0505 (14)	0.0645 (16)	0.0422 (13)	-0.0104 (12)	0.0144 (11)	0.0058 (12)
C12	0.0461 (16)	0.0525 (17)	0.0422 (16)	-0.0015 (13)	0.0137 (13)	-0.0031 (13)
С9	0.0458 (15)	0.0493 (16)	0.0401 (14)	0.0010 (12)	0.0204 (12)	0.0007 (12)
C30	0.0425 (16)	0.0569 (18)	0.0592 (19)	-0.0051 (14)	0.0191 (14)	-0.0073 (14)
C6	0.0340 (14)	0.0551 (18)	0.0513 (18)	-0.0118(12)	0.0088 (13)	-0.0012(14)
C8A	0.0428 (15)	0.0590 (18)	0.0435 (15)	-0.0052(13)	0.0169 (13)	0.0008 (13)
C13A	0.0512 (17)	0.0550 (17)	0.0423 (16)	0.0027 (13)	0.0200 (13)	0.0063 (13)
N7	0.0012(17)	0.0521 (14)	0.0485(15)	-0.0095(11)	0.0098 (11)	0.0002(12)
N25	0.0636 (19)	0.0021(11) 0.129(3)	0.0521 (19)	-0.027(2)	0.0212(16)	0.0021(11)
C22	0.0030(19) 0.0478(18)	0.029(3)	0.0321(17)	-0.0173(17)	0.0212(10) 0.0153(14)	0.000(2)
C1	0.064(2)	0.071(3)	0.0452(17)	0.0175(17)	0.0210(16)	0.0023(17)
C29	0.001(2)	0.072(2)	0.0479(16)	-0.0096(12)	0.0210(10)	-0.0025(13)
027	0.000 + (1+) 0.107 (2)	0.0307(10)	0.076(2)	-0.020(2)	0.0105(12) 0.0358(17)	0.0350 (12)
C35	0.107(2)	0.132(3)	0.070(2)	-0.0127(14)	0.0338(17) 0.0182(14)	-0.0082(13)
C33	0.0597(19)	0.0485(17)	0.0443(10)	-0.00127(14)	0.0132(14)	0.0082(13)
C24	0.0013(19)	0.0013(19)	0.0402(17)	-0.0011(13)	0.0177(13)	-0.0100(18)
C21	0.0505(19)	0.088(3)	0.0521(19)	-0.0121(18) -0.0186(17)	0.0233(10)	-0.0100(18)
026	0.003(2)	0.076(2)	0.0343(19)	-0.0180(17)	0.0199(17)	-0.0001(10)
026	0.114(3)	0.175(3)	0.0035(18)	-0.018(2)	0.0513 (19)	-0.006(2)
C23	0.062 (2)	0.0/1(2)	0.0493 (18)	-0.0096(17)	0.0131 (16)	0.0110 (16)
C14	0.0499 (18)	0.059(2)	0.057 (2)	-0.0162(15)	0.0084 (15)	0.0109 (16)
C41	0.04/5(1/)	0.0626 (19)	0.0445 (16)	0.0044 (14)	0.0126 (14)	-0.0033 (14)
C32	0.058 (2)	0.078 (2)	0.091 (3)	-0.0171 (18)	0.044 (2)	-0.034 (2)
C20	0.0450 (16)	0.0653 (19)	0.0524 (18)	-0.0071 (14)	0.0180 (14)	-0.0029 (15)
C46	0.080 (2)	0.058 (2)	0.057 (2)	0.0063 (17)	0.0053 (18)	-0.0025 (16)
C28	0.0415 (17)	0.088 (2)	0.060 (2)	0.0027 (16)	0.0188 (15)	0.0089 (17)
018	0.125 (2)	0.0802 (19)	0.0605 (18)	-0.0032 (16)	0.0206 (16)	0.0145 (13)
C34	0.0443 (16)	0.0655 (19)	0.0481 (17)	-0.0104 (14)	0.0198 (14)	-0.0095 (14)
C4	0.061 (2)	0.102 (3)	0.060 (2)	-0.0136 (19)	0.0289 (18)	0.0178 (19)
C37	0.105 (3)	0.060 (2)	0.065 (2)	-0.012 (2)	0.014 (2)	0.0089 (18)
C40	0.076 (2)	0.0505 (18)	0.0559 (19)	-0.0041 (16)	0.0207 (17)	-0.0053 (15)
C33	0.0561 (19)	0.092 (3)	0.060 (2)	-0.0223 (19)	0.0308 (17)	-0.0215 (18)
C2	0.087 (3)	0.110 (3)	0.0479 (19)	0.021 (2)	0.040 (2)	0.0155 (19)
C31	0.0472 (18)	0.063 (2)	0.097 (3)	-0.0027 (15)	0.0322 (19)	-0.0198 (19)
C43	0.060 (2)	0.104 (3)	0.052 (2)	0.015 (2)	0.0030 (17)	-0.0076 (19)
C42	0.0533 (19)	0.079 (2)	0.0517 (19)	0.0007 (16)	0.0141 (16)	-0.0066 (16)
C4A	0.0506 (17)	0.0612 (19)	0.0450 (16)	-0.0048 (14)	0.0194 (14)	0.0089 (14)
C3	0.072 (3)	0.126 (4)	0.074 (3)	0.006 (2)	0.046 (2)	0.023 (2)
C45	0.118 (4)	0.062 (2)	0.066 (2)	0.020 (2)	0.011 (2)	0.0047 (19)
C44	0.107 (3)	0.077 (3)	0.058 (2)	0.035 (2)	0.008 (2)	0.000 (2)
C39	0.083 (3)	0.114 (3)	0.074 (3)	-0.033 (3)	0.029 (2)	0.009 (2)
C17	0.095 (4)	0.145 (5)	0.111 (4)	0.035 (3)	0.046 (3)	0.062 (3)
C38	0.113 (4)	0.105 (3)	0.071 (3)	-0.041 (3)	0.027 (3)	0.020 (2)
C16	0.078 (3)	0.078 (3)	0.120 (4)	0.008 (2)	0.031 (3)	0.047 (3)
C47	0.170 (6)	0.117 (4)	0.078 (3)	0.051 (4)	-0.017 (3)	0.013 (3)

Geometric parameters (Å, °)

N13—C13A	1.421 (4)	С23—Н23	0.9300
N13—C12	1.427 (4)	C14—O18	1.191 (4)
N13—C9A	1.480 (3)	C41—C46	1.385 (5)
N10—N11	1.407 (3)	C41—C42	1.391 (4)
N10—C35	1.416 (4)	C32—C31	1.367 (5)
N10—C9A	1.514 (3)	C32—C33	1.373 (5)
N8—C19	1.369 (4)	С32—Н32	0.9300
N8—N7	1.398 (3)	C20—H20	0.9300
N8—C8A	1.482 (4)	C46—C45	1.378 (5)
O15—C14	1.325 (4)	C46—H46	0.9300
O15—C16	1.466 (4)	C28—H28A	0.9600
C19—C20	1.401 (4)	C28—H28B	0.9600
C19—C24	1.408 (4)	C28—H28C	0.9600
С9А—С9	1.525 (4)	C34—C33	1.388 (4)
C9A—C29	1.534 (4)	С34—Н34	0.9300
N11—C12	1.278 (4)	C4—C3	1.373 (6)
N5—C6	1.370 (4)	C4—C4A	1.380 (4)
N5—C4A	1.428 (4)	C4—H4	0.9300
N5—C8A	1.482 (4)	C37—C38	1.370 (7)
C12—C41	1.463 (4)	C37—C40	1.376 (5)
C9—C8A	1.545 (4)	С37—Н37	0.9300
С9—Н9А	0.9700	C40—H40	0.9300
С9—Н9В	0.9700	С33—Н33	0.9300
C30—C29	1.387 (4)	C2—C3	1.373 (6)
C30—C31	1.392 (4)	С2—Н2	0.9300
С30—Н30	0.9300	C31—H31	0.9300
C6—N7	1.284 (4)	C43—C44	1.372 (6)
C6—C14	1.489 (4)	C43—C42	1.384 (5)
C8A—C28	1.523 (4)	C43—H43	0.9300
C13A—C1	1.393 (4)	C42—H42	0.9300
C13A—C4A	1.394 (4)	С3—Н3	0.9300
N25—O26	1.220 (5)	C45—C44	1.381 (6)
N25—O27	1.238 (5)	C45—H45	0.9300
N25—C22	1.454 (4)	C44—C47	1.514 (6)
C22—C23	1.373 (5)	C39—C38	1.369 (7)
C22—C21	1.386 (5)	С39—Н39	0.9300
C1—C2	1.387 (5)	C17—C16	1.421 (6)
C1—H1	0.9300	C17—H17A	0.9600
C29—C34	1.390 (4)	С17—Н17В	0.9600
C35—C36	1.373 (5)	С17—Н17С	0.9600
C35—C40	1.393 (5)	C38—H38	0.9300
C24—C23	1.369 (4)	C16—H16A	0.9700
C24—H24	0.9300	C16—H16B	0.9700
C21—C20	1.370 (4)	C47—H47A	0.9600
C21—H21	0.9300	С47—Н47В	0.9600
C36—C39	1.377 (5)	C47—H47C	0.9600

С36—Н36	0.9300		
C13A—N13—C12	118.8 (2)	(2) C42—C41—C12	
C13A—N13—C9A	120.2 (2)	C31—C32—C33	119.4 (3)
C12—N13—C9A	103.2 (2)	С31—С32—Н32	120.3
N11—N10—C35	115.4 (2)	С33—С32—Н32	120.3
N11—N10—C9A	105.4 (2)	C21—C20—C19	120.6 (3)
C35—N10—C9A	120.4 (2)	C21—C20—H20	119.7
C19—N8—N7	118.8 (2)	С19—С20—Н20	119.7
C19—N8—C8A	128.0 (2)	C45—C46—C41	120.3 (4)
N7—N8—C8A	113.0 (2)	C45—C46—H46	119.8
C14—O15—C16	116.7 (3)	C41—C46—H46	119.8
N8—C19—C20	120.3 (3)	C8A—C28—H28A	109.5
N8—C19—C24	121.5 (3)	C8A—C28—H28B	109.5
C20—C19—C24	118.2 (3)	H28A—C28—H28B	109.5
N13—C9A—N10	98.2 (2)	C8A—C28—H28C	109.5
N13—C9A—C9	114.3 (2)	H28A—C28—H28C	109.5
N10—C9A—C9	109.7 (2)	H28B—C28—H28C	109.5
N13—C9A—C29	110.1 (2)	C33—C34—C29	120.8 (3)
N10-C9A-C29	110.7 (2)	C33—C34—H34	119.6
C9—C9A—C29	113.0 (2)	С29—С34—Н34	119.6
C12—N11—N10	107.1 (2)	C3—C4—C4A	120.5 (4)
C6—N5—C4A	128.9 (3)	C3—C4—H4	119.7
C6—N5—C8A	108.5 (2)	C4A—C4—H4	119.7
C4A—N5—C8A	116.9 (2)	C38—C37—C40	120.1 (4)
N11—C12—N13	113.5 (2)	С38—С37—Н37	119.9
N11—C12—C41	124.3 (3)	C40—C37—H37	119.9
N13—C12—C41	122.0 (3)	C37—C40—C35	119.8 (4)
C9A—C9—C8A	117.6 (2)	C37—C40—H40	120.1
С9А—С9—Н9А	107.9	C35—C40—H40	120.1
С8А—С9—Н9А	107.9	C32—C33—C34	120.4 (3)
С9А—С9—Н9В	107.9	С32—С33—Н33	119.8
С8А—С9—Н9В	107.9	С34—С33—Н33	119.8
Н9А—С9—Н9В	107.2	C3—C2—C1	120.9 (3)
C29—C30—C31	120.5 (3)	С3—С2—Н2	119.6
C29—C30—H30	119.8	C1—C2—H2	119.6
С31—С30—Н30	119.8	C32—C31—C30	120.8 (3)
N7—C6—N5	114.9 (3)	C32—C31—H31	119.6
N7—C6—C14	122.5 (3)	С30—С31—Н31	119.6
N5—C6—C14	122.6 (3)	C44—C43—C42	121.9 (4)
N8—C8A—N5	97.4 (2)	C44—C43—H43	119.0
N8—C8A—C28	112.9 (2)	C42—C43—H43	119.0
N5—C8A—C28	109.9 (2)	C43—C42—C41	120.1 (4)
N8—C8A—C9	115.0 (2)	C43—C42—H42	120.0
N5—C8A—C9	110.3 (2)	C41—C42—H42	120.0
C28—C8A—C9	110.5 (3)	C4—C4A—C13A	120.5 (3)
CI—CI3A—C4A	118.6 (3)	C4—C4A—N5	119.5 (3)
C1—C13A—N13	122.8 (3)	C13A—C4A—N5	119.7 (3)
C4A—C13A—N13	118.5 (3)	C2—C3—C4	119.6 (3)
C6—N7—N8	105.0 (2)	C2—C3—H3	120.2

O26—N25—O27	123.2 (4)	С4—С3—Н3	120.2
O26—N25—C22	118.4 (4)	C46—C45—C44	121.8 (4)
O27—N25—C22	118.4 (4)	C46—C45—H45	119.1
C23—C22—C21	121.1 (3)	C44—C45—H45	119.1
C23—C22—N25	118.9 (4)	C43—C44—C45	117.5 (4)
C21—C22—N25	120.0 (4)	C43—C44—C47	121.3 (4)
C2C1C13A	119.9 (3)	C45—C44—C47	121.1 (5)
C2—C1—H1	120.1	C38—C39—C36	120.4 (4)
C13A—C1—H1	120.1	С38—С39—Н39	119.8
C30—C29—C34	118.1 (3)	С36—С39—Н39	119.8
C30—C29—C9A	121.7 (3)	С16—С17—Н17А	109.5
C34—C29—C9A	120.2 (3)	С16—С17—Н17В	109.5
C36—C35—C40	119.4 (3)	H17A—C17—H17B	109.5
C36—C35—N10	123.0 (3)	С16—С17—Н17С	109.5
C40—C35—N10	117.6 (3)	H17A—C17—H17C	109.5
C23—C24—C19	120.8 (3)	H17B—C17—H17C	109.5
C23—C24—H24	119.6	C39—C38—C37	120.1 (4)
C19—C24—H24	119.6	С39—С38—Н38	120.0
C20—C21—C22	119.6 (3)	С37—С38—Н38	120.0
C20—C21—H21	120.2	C17—C16—O15	110.9 (3)
C22—C21—H21	120.2	С17—С16—Н16А	109.5
C35—C36—C39	120.0 (4)	O15-C16-H16A	109.5
С35—С36—Н36	120.0	C17—C16—H16B	109.5
С39—С36—Н36	120.0	O15—C16—H16B	109.5
C24—C23—C22	119.6 (3)	H16A—C16—H16B	108.0
С24—С23—Н23	120.2	C44—C47—H47A	109.5
С22—С23—Н23	120.2	С44—С47—Н47В	109.5
O18—C14—O15	126.1 (3)	H47A—C47—H47B	109.5
O18—C14—C6	122.1 (4)	C44—C47—H47C	109.5
O15-C14-C6	111.8 (3)	H47A—C47—H47C	109.5
C46—C41—C42	118.3 (3)	H47B—C47—H47C	109.5
C46—C41—C12	120.9 (3)		
N7—N8—C19—C20	4.0 (4)	N13-C9A-C29-C34	-178.9 (2)
C8A-N8-C19-C20	178.9 (3)	N10-C9A-C29-C34	-71.4 (3)
N7—N8—C19—C24	-175.4 (2)	C9—C9A—C29—C34	52.0 (3)
C8A—N8—C19—C24	-0.4 (4)	N11—N10—C35—C36	30.3 (4)
C13A—N13—C9A—N10	105.0 (3)	C9A—N10—C35—C36	-98.0 (3)
C12—N13—C9A—N10	-30.1 (2)	N11—N10—C35—C40	-150.2 (3)
C13A—N13—C9A—C9	-11.0 (3)	C9A—N10—C35—C40	81.6 (3)
C12—N13—C9A—C9	-146.2 (2)	N8—C19—C24—C23	177.8 (3)
C13A—N13—C9A—C29	-139.4 (2)	C20-C19-C24-C23	-1.5 (4)
C12—N13—C9A—C29	85.5 (3)	C23—C22—C21—C20	-1.7 (5)
N11—N10—C9A—N13	34.7 (2)	N25-C22-C21-C20	177.3 (3)
C35—N10—C9A—N13	167.3 (2)	C40—C35—C36—C39	-2.1 (5)
N11—N10—C9A—C9	154.3 (2)	N10-C35-C36-C39	177.4 (3)
C35—N10—C9A—C9	-73.1 (3)	C19—C24—C23—C22	-0.1 (5)
N11—N10—C9A—C29	-80.5 (3)	C21—C22—C23—C24	1.7 (5)
C35—N10—C9A—C29	52.2 (3)	N25-C22-C23-C24	-177.3 (3)
C35—N10—N11—C12	-161.6 (2)	C16-015-C14-018	-3.5 (5)

C9A—N10—N11—C12	-26.3 (3)	C16—O15—C14—C6	175.3 (3)
N10-N11-C12-N13	5.7 (3)	N7-C6-C14-O18	171.9 (3)
N10—N11—C12—C41	-178.6 (3)	N5-C6-C14-O18	-6.3 (5)
C13A—N13—C12—N11	-118.5 (3)	N7—C6—C14—O15	-7.0 (4)
C9A—N13—C12—N11	17.4 (3)	N5-C6-C14-O15	174.8 (3)
C13A—N13—C12—C41	65.7 (4)	N11—C12—C41—C46	-165.7 (3)
C9A—N13—C12—C41	-158.4 (3)	N13—C12—C41—C46	9.7 (5)
N13—C9A—C9—C8A	-64.3 (3)	N11—C12—C41—C42	14.2 (5)
N10-C9A-C9-C8A	-173.4(2)	N13—C12—C41—C42	-170.5(3)
C29—C9A—C9—C8A	62.6 (3)	C22—C21—C20—C19	0.0 (5)
C4A—N5—C6—N7	-162.1(3)	N8-C19-C20-C21	-177.8(3)
C8A—N5—C6—N7	-102(3)	C24—C19—C20—C21	15(4)
C4A - N5 - C6 - C14	163(4)	C42 - C41 - C46 - C45	-0.2(6)
C8A - N5 - C6 - C14	168 2 (2)	C_{12} C_{41} C_{46} C_{45}	179 6 (4)
C19 - N8 - C8A - N5	175 8 (2)	C_{30} C_{29} C_{34} C_{33}	16(4)
N7—N8—C8A—N5	-90(3)	C9A - C29 - C34 - C33	-1791(3)
C19 - N8 - C8A - C28	60 5 (4)	C_{38} C_{37} C_{40} C_{35}	-13(5)
N7 - N8 - C8A - C28	-1243(3)	C_{36} C_{35} C_{40} C_{37}	31(5)
C19 - N8 - C8A - C9	-67.7(3)	N10-C35-C40-C37	-1765(3)
N7 - N8 - C8A - C9	107 5 (3)	C_{31} C_{32} C_{33} C_{34}	-10(5)
C6-N5-C8A-N8	107.3(3)	C_{29} C_{34} C_{33} C_{37}	-0.2(5)
C4A = N5 = C8A = N8	166.4(2)	$C_{13}A - C_{1} - C_{2} - C_{3}$	-0.2(6)
$C_{6} N_{5} C_{8} A_{2} C_{2}^{8}$	1285(3)	C_{33} C_{32} C_{31} C_{30}	0.2(0)
C44 - N5 - C84 - C28	-75.8(3)	C_{29} C_{30} C_{31} C_{32}	0.7(5)
$C_{6} N_{5} C_{8} A_{6} C_{9}$	-1095(3)	C_{44} C_{43} C_{42} C_{41}	-1.3(6)
C4A - N5 - C8A - C9	46 2 (3)	C46-C41-C42-C43	0.9(5)
C9A - C9 - C8A - N8	-67.1.(3)	C_{12} C_{41} C_{42} C_{43}	-1790(3)
C9A - C9 - C8A - N5	41 8 (3)	$C_3 - C_4 - C_{4A} - C_{13A}$	-1.8(5)
C9A - C9 - C8A - C28	163 5 (2)	$C_3 - C_4 - C_4 - N_5$	-175.6(3)
C_{12} N13 $-C_{13}$ C1	7 0 (4)	C1 - C13A - C4A - C4	11(5)
C9A = N13 = C13A = C1	-1214(3)	N13— $C13A$ — $C4A$ — $C4$	178 1 (3)
C12— $N13$ — $C13A$ — $C4A$	-1698(3)	C1— $C13A$ — $C4A$ — $N5$	174 9 (3)
C9A = N13 = C13A = C4A	61 7 (4)	N13— $C13A$ — $C4A$ — $N5$	-81(4)
N5-C6-N7-N8	40(3)	C6-N5-C4A-C4	-107.8(4)
C14—C6—N7—N8	-1744(2)	C8A - N5 - C4A - C4	102.3 (3)
C19—N8—N7—C6	179.6 (2)	C6-N5-C4A-C13A	78 3 (4)
C8A - N8 - N7 - C6	39(3)	C8A - N5 - C4A - C13A	-716(4)
026-N25-C22-C23	177 9 (3)	C1 - C2 - C3 - C4	-0.5(6)
027—N25—C22—C23	-2.0(5)	C4A - C4 - C3 - C2	1.4 (6)
026-N25-C22-C21	-1.1 (5)	C41—C46—C45—C44	-0.1(7)
027—N25—C22—C21	179.0 (3)	C42—C43—C44—C45	1.0 (7)
C4A— $C13A$ — $C1$ — $C2$	-0.1(5)	C42 - C43 - C44 - C47	-177.4(5)
N13—C13A—C1—C2	-177.0(3)	C46—C45—C44—C43	-0.3(7)
C31—C30—C29—C34	-2.0 (4)	C46—C45—C44—C47	178.1 (5)
C31—C30—C29—C9A	178.8 (3)	C35—C36—C39—C38	-0.7 (6)
N13—C9A—C29—C30	0.4 (3)	C36—C39—C38—C37	2.5 (7)
N10-C9A-C29-C30	107.8 (3)	C40—C37—C38—C39	-1.5 (7)
C9—C9A—C29—C30	-128.8 (3)	C14—O15—C16—C17	-96.1 (5)
	× /		· · /

D—H··· A		<i>D</i> —Н	H…A	$D \cdots A$	D—H···A
C16—H16A…O18		0.97	2.34	2.708 (6)	101
C20—H20…N7		0.93	2.42	2.751 (4)	101
C30—H30…N13		0.93	2.40	2.779 (4)	104
C46—H46…N13		0.93	2.61	2.938 (4)	101
D — H ··· π ring interaction	ons				
D - H - Cg	D—H	$H \cdots Cg$	$D \cdots Cg$		D— H ··· Cg
C34—H34…Cg1 ⁱ	0.98	2.93	3.666 (5)		121
C19—H19…Cg2 ⁱⁱ	0.93	2.86	3.697 (5)		146

Hydrogen-bond geometry (Å, °)

Symmetry codes: (i) x, y, z; (ii) x, 3/2 - y, z - 1/2. Values were calculated using *PLATON* (Version 200905; Spek, 2003). *Cg*1 and *Cg*2 are the centroids of the phenyl and 3-methylphenyl rings C35/C36/C39/C38/C37/C40 and C41/C42/C43/C44/C45/C46, respectively.

Fig. 1

